Skip to main content

INDIA’S ATOMIC ENERGY PROGRAMME

 The atomic energy programme in India was launched around the time of independence under the leadership of Homi J. Bhabha (1909-1966). An early historic achievement was the design and construction of the first nuclear reactor in India (named Apsara) which went critical on August 4, 1956. It used enriched uranium as fuel and water as moderator. Following this was another notable landmark: the construction of CIRUS (Canada India Research U.S.) reactor in 1960. This 40 MW reactor used natural uranium as fuel and heavy water as moderator. Apsara and CIRUS spurred research in a wide range of areas of basic and applied nuclear science. An important milestone in the first two decades of the programme was the indigenous design and construction of the plutonium plant at Trombay, which ushered in the technology of fuel reprocessing (separating useful fissile and fertile nuclear materials from the spent fuel of a reactor) in India. Research reactors that have been subsequently commissioned in...

Helical motion of charged particles and aurora borealis

 In polar regions like Alaska and Northern Canada, a splendid display of colours is seen in the sky. The appearance of dancing green pink lights is fascinating, and equally puzzling. An explanation of this natural phenomenon is now found in physics, in terms of what we have studied here.


Consider a charged particle of mass m and charge q, entering a region of magnetic field B with an initial velocity v. Let this velocity have a component v p parallel to the magnetic field and a component vn normal to it. There is no force on a charged particle in the direction of the field. Hence the particle continues to travel with the velocity v p parallel to the field. The normal component vn of the particle results in a Lorentz force (vn ×B) which is perpendicular to both vn and B. As seen in Section 4.3.1 the particle thus has a tendency to perform a circular motion in a plane perpendicular to the magnetic field. When this is coupled with the velocity parallel to the field, the resulting trajectory will be a helix along the magnetic field line, as shown in Figure (a) here. Even if the field line bends, the helically moving particle is trapped and guided to move around the field line. Since the Lorentz force is normal to the velocity of each point, the field does no work on the particle and the magnitude of velocity remains the same.


During a solar flare, a large number of electrons and protons are ejected from the sun. Some of them get trapped in the earth’s magnetic field and move in helical paths along the field lines. The field lines come closer to each other near the magnetic poles; see figure (b). Hence the density of charges increases near the poles. These particles collide with atoms and molecules of the atmosphere. Excited oxygen atoms emit green light and excited nitrogen atoms emits pink light. This phenomenon is called Aurora Borealis in physics.

Comments

Popular posts from this blog

On permittivity and permeability

 In the universal law of gravitation, we say that any two point masses exert a force on each other which is proportional to the product of the masses m1 , m2 and inversely proportional to the square of the distance r between them. We write it as F = Gm1m2 /r 2 where G is the universal constant of gravitation. Similarly, in Coulomb’s law of electrostatics we write the force between two point charges q1 , q2 , separated by a distance r as F = kq1 q2 /r 2 where k is a constant of proportionality.  In SI units, k is taken as 1/4πε where ε is the permittivity of the medium. Also in magnetism, we get another constant, which in SI units, is taken as µ/4π where µ is the permeability of the medium Although G, ε and µ arise as proportionality constants, there is a difference between gravitational force and electromagnetic force. While the gravitational force does not depend on the intervening medium, the electromagnetic force depends on the medium between the two charges or magnets. H...

Laser Light

 Imagine a crowded market place or a railway platform with people entering a gate and going towards all directions. Their footsteps are random and there is no phase correlation between them. On the other hand, think of a large number of soldiers in a regulated march. Their footsteps are very well correlated. See figure here. This is similar to the difference between light emitted by an ordinary source like a candle or a bulb and that emitted by a laser. The acronym LASER stands for Light Amplification by Stimulated Emission of Radiation. Since its development in 1960, it has entered into all areas of science and technology. It has found applications in physics, chemistry, biology, medicine, surgery, engineering, etc. There are low power lasers, with a power of 0.5 mW, called pencil lasers, which serve as pointers. There are also lasers of different power, suitable for delicate surgery of eye or glands in the stomach. Finally, there are lasers which can cut or weld steel. Light is e...

Mass – Energy

 Einstein showed from his theory of special relativity that it is necessary to treat mass as another form of energy. Before the advent of this theory of special relativity it was presumed that mass and energy were conserved separately in a reaction. However, Einstein showed that mass is another form of energy and one can convert mass-energy into other forms of energy, say kinetic energy and vice-versa. Einstein gave the famous mass-energy equivalence relation E = mc 2 Here the energy equivalent of mass m is related by the above equation and c is the velocity of light in vacuum and is approximately equal to 3×108 m s–1. Experimental verification of the Einstein’s mass-energy relation has been achieved in the study of nuclear reactions amongst nucleons, nuclei, electrons and other more recently discovered particles. In a reaction the conservation law of energy states that the initial energy and the final energy are equal provided the energy associated with mass is also included. Thi...