Skip to main content

INDIA’S ATOMIC ENERGY PROGRAMME

 The atomic energy programme in India was launched around the time of independence under the leadership of Homi J. Bhabha (1909-1966). An early historic achievement was the design and construction of the first nuclear reactor in India (named Apsara) which went critical on August 4, 1956. It used enriched uranium as fuel and water as moderator. Following this was another notable landmark: the construction of CIRUS (Canada India Research U.S.) reactor in 1960. This 40 MW reactor used natural uranium as fuel and heavy water as moderator. Apsara and CIRUS spurred research in a wide range of areas of basic and applied nuclear science. An important milestone in the first two decades of the programme was the indigenous design and construction of the plutonium plant at Trombay, which ushered in the technology of fuel reprocessing (separating useful fissile and fertile nuclear materials from the spent fuel of a reactor) in India. Research reactors that have been subsequently commissioned in...

Magnetic fields on the axis of a circular current loop

 In this section, we shall evaluate the magnetic field due to a circular coil along its axis. The evaluation entails summing up the effect of infinitesimal current elements (I dl) mentioned in the previous section. We assume that the current I is steady and that the evaluation is carried out in free space (i.e., vacuum).

depicts a circular loop carrying a steady current I. The loop is placed in the y-z plane with its centre at the origin O and has a radius R. The x-axis is the axis of the loop. We wish to calculate the magnetic field at the point P on this axis. Let x be the distance of P from the centre O of the loop.

Consider a conducting element dl of the loop. This is shown in Fig. 4.11. The magnitude dB of the magnetic field due to dl is given by the Biot-Savart law

Now r 2 = x 2 + R 2 . Further, any element of the loop will be perpendicular to the displacement vector from the element to the axial point. For example, the element dl in Fig. 4.11 is in the y-z plane, whereas, the displacement vector r from dl to the axial point P is in the x-y plane. Hence |dl × r|=r dl. Thus,

The direction of dB is shown in Fig. 4.11. It is perpendicular to the plane formed by dl and r. It has an x-component dBx and a component perpendicular to x-axis, dB⊥ . When the components perpendicular to the x-axis are summed over, they cancel out and we obtain a null result. For example, the dB⊥ component due to dl is cancelled by the contribution due to the diametrically opposite dl element, shown in Fig. 4.11. Thus, only the x-component survives. The net contribution along x-direction can be obtained by integrating dBx = dB cos θ over the loop

The summation of elements dl over the loop yields 2πR, the circumference of the loop. Thus, the magnetic field at P due to entire circular loop is

As a special case of the above result, we may obtain the field at the centre of the loop. Here x = 0, and we obtain,

The magnetic field lines due to a circular wire form closed loops and are shown in Fig. 4.12. The direction of the magnetic field is given by (another) right-hand thumb rule stated below: Curl the palm of your right hand around the circular wire with the fingers pointing in the direction of the current. The right-hand thumb gives the direction of the magnetic field.

Comments

Popular posts from this blog

On permittivity and permeability

 In the universal law of gravitation, we say that any two point masses exert a force on each other which is proportional to the product of the masses m1 , m2 and inversely proportional to the square of the distance r between them. We write it as F = Gm1m2 /r 2 where G is the universal constant of gravitation. Similarly, in Coulomb’s law of electrostatics we write the force between two point charges q1 , q2 , separated by a distance r as F = kq1 q2 /r 2 where k is a constant of proportionality.  In SI units, k is taken as 1/4πε where ε is the permittivity of the medium. Also in magnetism, we get another constant, which in SI units, is taken as µ/4π where µ is the permeability of the medium Although G, ε and µ arise as proportionality constants, there is a difference between gravitational force and electromagnetic force. While the gravitational force does not depend on the intervening medium, the electromagnetic force depends on the medium between the two charges or magnets. H...

Laser Light

 Imagine a crowded market place or a railway platform with people entering a gate and going towards all directions. Their footsteps are random and there is no phase correlation between them. On the other hand, think of a large number of soldiers in a regulated march. Their footsteps are very well correlated. See figure here. This is similar to the difference between light emitted by an ordinary source like a candle or a bulb and that emitted by a laser. The acronym LASER stands for Light Amplification by Stimulated Emission of Radiation. Since its development in 1960, it has entered into all areas of science and technology. It has found applications in physics, chemistry, biology, medicine, surgery, engineering, etc. There are low power lasers, with a power of 0.5 mW, called pencil lasers, which serve as pointers. There are also lasers of different power, suitable for delicate surgery of eye or glands in the stomach. Finally, there are lasers which can cut or weld steel. Light is e...

Mass – Energy

 Einstein showed from his theory of special relativity that it is necessary to treat mass as another form of energy. Before the advent of this theory of special relativity it was presumed that mass and energy were conserved separately in a reaction. However, Einstein showed that mass is another form of energy and one can convert mass-energy into other forms of energy, say kinetic energy and vice-versa. Einstein gave the famous mass-energy equivalence relation E = mc 2 Here the energy equivalent of mass m is related by the above equation and c is the velocity of light in vacuum and is approximately equal to 3×108 m s–1. Experimental verification of the Einstein’s mass-energy relation has been achieved in the study of nuclear reactions amongst nucleons, nuclei, electrons and other more recently discovered particles. In a reaction the conservation law of energy states that the initial energy and the final energy are equal provided the energy associated with mass is also included. Thi...